Welcome to fun made by fun people

A new standard in Robotics

Posted on 21 November 2016

A new standard in robotics

November 18, 2016
A new standard in robotics
Credit: Yale University

On the wall of Aaron Dollar's office is a poster for R.U.R. (Rossum's Universal Robots), the 1920 Czech play that gave us the word "robot." The story ends with the nominal robots seizing control of the factory of their origin and then wiping out nearly all of humanity. Dollar, fortunately, has something more cheerful in mind for the future of human-robot relations.

He sees them as helpers in our daily lives—performing tasks like setting the table or assisting with the assembly of your new bookcase. But getting to the point where robots can work in the unstructured environment of our homes (as opposed to industrial settings) would take a major technological leap and a massive coordination of efforts from roboticists around the globe. The living room has been called the last frontier for robots—but first, the robotics community needs some standards that everyone can agree on.

Enter a suitcase-sized box containing 77 objects. It contains things like hammers, a cordless drill, a can of Spam and a nine-hole peg test. As ordinary as they may seem, these carefully curated household items could be the future of a new kind of standardization for robotics. Known as the Yale-CMU-Berkeley (YCB) Object and Model Set, the intent is to provide universal benchmarks for labs specializing in robotic manipulation and prosthetics around the world.

Dollar, an associate professor of mechanical engineering & materials science, came up with the idea about two years ago. He wants to bring a level of specificity and universality to manipulation tasks in robotics research. For instance, a research paper today might describe a particular task as "robotic hand grasps hammer." Are we talking about a big hammer or a little one? We don't know, and that's a problem if you work in a robotics lab looking to replicate the research. With the YCB Set, everyone's on the same page—in this hypothetical case, by working with the same 23.45-ounce Stanley hammer included in the set.

In addition to the objects, the project also provides five examples of manipulation tasks (such as pouring water from a pitcher to a mug, or setting the table) and benchmarks for each. A website for the project also allows other laboratories to expand on these tasks by contributing their own protocols and benchmarks. When laboratories work solely by their own standards and protocols, Dollar said, there's often an unconscious bias toward that lab's particular strengths. Universal standards would provide a more impartial way to evaluate results.

The YCB Set arrives at a time when the robotics field has reached a critical point. Robots currently do well in structured environments, such as factory settings, where they perform and repeat a very limited number of tasks. "In a structured environment, a robot sees exactly the same object in exactly the same place," Dollar said. "It's a relatively straightforward thing to get robots to operate in those environments because you just have to program it to do one thing. And you can always program something to do one thing well."

But Dollar and other roboticists have something more challenging in mind for their creations.

A new standard in robotics
A robot grasps a power drill. Credit: Yale University

"People in the robotics community today are thinking about robots that can work in daily environments, and in the home," he said. "That's sort of the flip side of assembly lines."

Standards have long been a crucial part in the advancement of science. Until the 19th century, the schedules of individual communities were governed by municipal clocks. Today, thanks to globally coordinated time (and increasingly accurate atomic clocks), we have personal GPS systems and driverless cars. For centuries, people used their hands and feet to measure the lengths and heights of things. When things got standardized around the world, the International Committee for Weights and Measures stored metal rods in a climate-controlled vault in Paris, each serving as the standard bearer for a particular unit of measurement. In more recent years, those metal objects have been usurped by even more precise standards based on the speed of light (in which we come back again to atomic clocks and the standardization of time).

In a sense, the 77-item box is the robotics equivalent of the Paris vault or the atomic clocks, and may usher in an era when laboratories better communicate to advance the field at a faster pace. It's a critical step, since things get tricky as robots move away from the assembly line. Dollar specializes in robotic manipulation, or grasping. As humans, we often take for granted the complexity of something as seemingly simple as picking up a fork and using it. To build robots that can perform not just one of these tasks, but many, individual labs can no longer work as isolated villages operating on their own measurements. They need a universal standard.

Read more @ http://phys.org/news/2016-11-standard-robotics.html

 

More Posts

0 comments

Leave a comment

All blog comments are checked prior to publishing

Search our store